If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9p^2-7p=0
a = 9; b = -7; c = 0;
Δ = b2-4ac
Δ = -72-4·9·0
Δ = 49
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{49}=7$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-7)-7}{2*9}=\frac{0}{18} =0 $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-7)+7}{2*9}=\frac{14}{18} =7/9 $
| 2x+3=6400 | | 14x+23=3(3x+9)+5x-4 | | 1.25f=10−2.75f | | -10=x-6x | | 11x+9=10x-5 | | 5+x-2/3=x | | -88=8(n-7) | | -x+-18=18x | | 4m+10=7m+5 | | 6r−4=2r | | 3=-3-2a-2 | | 2=m+4 | | x^+5x=9x+12 | | -4.3-4.8(-4.3+1.8x)=104.75 | | 6/5+4/5x=23/10+3/2x+1/2 | | -37-7x=-8x+6(x-7) | | 180=(1/2x-10) | | 4x+7=x–8 | | 34-2x=7x+2x | | 6z+10=4z=19 | | -3-11n=-146 | | 2x2-4x+7=0 | | 90=(1/2x-10) | | -2x+3(-x+2)=-24 | | (x-10)/7=-6 | | 5/8u=35 | | 2p+6/5=5/4p-9/5 | | 1/2x-10=90 | | 10/7=3/x | | -5h+10=7h+28 | | 15/(-2h)=5/12 | | 10/7=b/3 |